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Abstract

Purpose: The purpose of this study was to build and evaluate a high-performance algorithm
to detect and characterize the presence of a meniscus tear on magnetic resonance imaging
examination (MRI) of the knee.

Material and methods: An algorithm was trained on a dataset of 1123 MR images of the knee.
We separated the main task into three sub-tasks: first to detect the position of both horns,
second to detect the presence of a tear, and last to determine the orientation of the tear.
An algorithm based on fast-region convolutional neural network (CNN) and faster-region CNN,
was developed to classify the tasks. The algorithm was thus used on a test dataset composed
of 700 images for external validation. The performance metric was based on area under the
curve (AUC) analysis for each task and a final weighted AUC encompassing the three tasks was
calculated.

Results: The use of our algorithm yielded an AUC of 0.92 for the detection of the position of
the two meniscal horns, of 0.94 for the presence of a meniscal tear and of 083 for determining
the orientation of the tear, resulting in a final weighted AUC of 0.90.

Conclusion: We demonstrate that our algorithm based on fast-region CNN is able to detect
meniscal tears and is a first step towards developing more end-to-end artificial intelligence-
powered diagnostic tools.
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Introduction

Machine learning software has the potential to make work-
flow more efficient for medical professionals. Indeed,
manufacturers of radiological equipment have started inte-
grating artificial intelligence (Al) tools into their medical
imaging software systems. This approach is limited by the
need to access large numbers of patient data and images
that provide learning material for Al algorithms.

The French Radiology Society (SFR) organized a data
challenge to detect meniscus tears using a dataset from
magnetic resonance imaging (MRI) examination of the knees
in October 2018 during the Journées Francophones de la
Radiologie. The meniscus tear is one of the most frequent
cartilage injuries of the knee, and MRI is a useful method
for detecting meniscus tears as it has high sensitivity and
specificity for that task [1,2].

The purpose of this study was to build and evaluate a
high-performance algorithm to detect and characterize the
presence of a meniscus tear on MRI of the knee.

Material and methods
Data collection

We formed a multidisciplinary team comprised of three
radiologists from the Georges Pompidou hospital of the
Assistance Publique—Ho6pitaux de Paris (AP—HP) and three
engineers including one student from Centrale-Supélec
School. Images were collected after obtaining signed
informed consent from patients, anonymization, and
authorization by the French regulatory authorities (i.e.,
Commission nationale de ’informatique et des libertés).

The training dataset was composed of 1123 MR images
of the knee, and the test dataset was composed of 700
images. All these MR images were obtained from 41 hos-
pitals in France. The dataset contained T2-weighted images
of the right or left knee passing through the anterior and
posterior horns of the medial or lateral meniscus in Nifti for-
mat [3,4] with a matrix resolution of 256 x 256 and isotropic
voxels of 0.332mm?. Only normal menisci or those with
abnormal grade 3 high meniscal signal intensity accord-
ing to Stoller’s classification (abnormal hyperintensity that
extends to at least one articular surface, superior or infe-
rior) were included. Along with training images, we also had
annotation data in a comma-separated values (CSV) file with
information about the type of meniscus (lateral or medial),
the presence of tear and, if any, its location (anterior or pos-
terior), and orientation (horizontal or longitudinal), which
were used as ground truth. Fig. 1 illustrates images from
the data set.

The objective of the challenge was to build a high-
performance algorithm to detect the presence of a tear in
the meniscus, the position of the tear and its orientation.
Meniscus tear includes two main mechanisms: degenera-
tive (longitudinal) or post-traumatic, and their diagnosis
is based on two important imaging criteria including an
abnormal shape of the meniscus and high signal intensity
unequivocally in contact with the surface of the meniscus on
T2-weighted MRl images. We studied the high signal intensity
to detect the tear.

We separated the main task into three sub-tasks:
® meniscus detection (the position of both horns);
® meniscus classification (with or without tear);

e tear classification (orientation of the tear).

Afirst *‘brute-force’’ version of the algorithm could have
been used to train a neural network to perform a binary
classification on the entire image (torn meniscus vs. no torn
meniscus). Instead, we decided to follow the steps doctors
take to perform the diagnosis without an algorithm: first to
find the horns in the image, then diagnose each of them
as torn or not. The horn represented a small part of the
total image and the tear an even smaller one (Fig. 1). The
main information to detect the meniscus tear was the high
intensity signal on the horn. However, the limitation of con-
sidering only the high intensity signal was that the images
were often noisy (Fig. 2).

Convolutional neural network

All three steps of our algorithm were based on convolutional
neural network (CNN), and more specifically on fast-region
CNN (RCNN) [5] and faster-RCNN [6] backbones.

A CNN is an accumulation (more or less deep) of layers
classified into four main categories: convolutional layers,
rectification layers, pooling layers, and loss layers [7]. The
learning process of a CNN lies in two different steps: the
forward pass (computes the loss), and the backward pass
(computes the gradient of this loss). The backward pass
begins with the loss and computes the gradient with respect
to the output. The gradient with respect to the rest of
the model is computed layer-by-layer through the chain
rule. The weight parameters of the network are usually
updated using a stochastic gradient descent (SGD). Using
a batch of images (usually around 100) randomly selected
from a dataset, we evaluate a loss that is back-propagated
to update the weight parameters of the network according
to Eq. (1):

w0 1
W=w-—a-r (1)

To train a CNN, this operation is repeated thousands of
times until we reach convergence. Thus, a larger dataset
would result in better CNN training.

RCNN

Object detection tasks recognize an object, and object

localization tasks evaluate the coordinates of a bounding

box in which the object is situated in the image. The RCNN

combines a region proposal algorithm with a CNN [8]. The

object detection pipeline consists of three main modules:

® a region proposal algorithm, which extracts category-
independent regions of interest in a given image;

¢ a large and deep CNN that generates a fixed-length fea-
ture vector from each region proposal;

® a set of one-versus-all linear support vector machine
(SVM) classifiers, which classify each region proposal
(Fig. 3).
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Figure 1.

T2-weighted MR images in the sagittal plane through the medial or lateral meniscus show the different types of meniscal images

included in the training and validation data sets. (a) Lateral meniscus without tear, (b) lateral meniscus with horizontal tear in the anterior
horn (arrow), (c) medial meniscus with vertical tear in the posterior horn (arrow)and (d) medial meniscus with vertical tear in the posterior

horn (arrow).
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Figure 2. T2-weighted MR image of the knee including bounding
boxes with their classification. The image was originally obtained in
the sagittal plane and further flipped horizontally and rotated 90°
counter-clockwise for analysis purposes.

Fast RCNN

To overcome the limitations of RCNN, a fast RCNN was used
[5]. This *‘accelerated method’’ forwards the whole image
in the net and extracts the region proposals only after the
last convolutional layer and before the first fully connected
layer. This is done through a region of interest (ROIl)-pooling
layer; given the coordinates of the ROI, and the feature
maps supplied by the last convolutional layer of the net-
work (typically an array of size H x W x C), the ROI-pooling
layers output max-pooled feature maps with fixed spatial
size H' x W’ and the original C channels (H' <H and W' <W).
Thus, instead of forwarding each region proposal through
the net one by one, we forward the full image only once,
reducing computational time considerably.

Faster RCNN

Since convolutions are shared across region proposals, fast
RCNN achieves near real-time rates using deep networks,
but this does not include the time spent on region proposals.
Region proposal computational time is thus the bottleneck
region of interest of these methods. To tackle this barrier,
a region proposal network (RPN) that shares full-image
convolutional features with the detection network, has
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Extract region

Input image proposals

Figure 3.

been developed thus enabling nearly cost-free region
proposals[6]. A RPN is a fully convolutional network that
simultaneously predicts object bounds and objectness
scores at each position [9]. A RPN takes an image of any size
as input and outputs a set of rectangular region proposals
that are most likely to contain an object. Each region
proposal comes with an objectness score.

RPN can be considered a fully convolutional network, but
the main advantage of the RPN described in faster RCNN [7]
is that its convolutional layers are shared with the fast RCNN
[5] object detection architecture. Thus, both networks can
share a large part of their computation. After the last shared
convolution layer, a feature map is generated on which they
slide a convolution layer of 3 x 3, followed by two sibling
fully-connected layers. A box-regression layer outputs the
deltas that must be applied to the coordinates of reference
boxes (called anchors) [5], and a classification layer that
computes the probability of being an object. At each node
of the feature map, « region proposals are simultaneously
predicted corresponding to different scale and aspect ratio.
Therefore, for a feature map of dimension H x W there is a
total of H x W x k reference boxes. Here, we used 3 scales
and 3 aspect ratios, yielding k=9 reference boxes.

Training

Dataset

Our training dataset consisted of 1123 images. To train the
three steps of our algorithm, we annotated each image
with a bounding box surrounding each horn of the meniscus
(Fig. 4). Then we added a label of either not torn, horizon-
tal tear, or vertical tear to each bounding box (Fig. 5). We
had a total of 2246 menisci with 1948/2246 (87%) non-torn
menisci; 298/2246 (13%) with a meniscal tear; 183/272 (61%)
menisci with a horizontal tear; and 115/272 (39%) menisci
with a vertical tear.

Fast RCNN for meniscus classification

In fast RCNN [5], the selective search algorithm agnosti-
cally generates many regions of interest [10]. A label is
then assigned to each of these regions. A region that has
an intersection-over-union (IOU) higher than a set thresh-
old with any ground-truth box is given the label of the
ground truth box. A region with a maximum IOU over all the
ground truth boxes of the image below a second set thresh-
old is labeled as ‘background’’. We typically set the first
threshold to 0.3 and the second to 0.1. Instead of using the
selective search algorithm to generate the regions of inter-
ests, we randomly generate boxes around the ground truth
boxes (Fig. 4). This produced similar regions as selective

- - CNN Meniscus? Yes
Compute CNN . .
features Classify regions

Diagram shows the region convolutional neural network pipeline.

Figure 4. T2-weighted MR image of the knee in sagittal plane
with superimposed rectangular regions of interest generated by
the faster region convolutional neural network including menisci.
Bounding boxes of automatically-generated regions are in yellow.

search with the same diversity in size and aspect ratio, but
with the advantage of being instantaneous. After labeling
regions of interest, we fed them with corresponding images
to the network and trained it using SGD and a softmax loss. In
order to augment the size of our dataset, we used both the
original images and their vertically-flipped version during
the training. We trained both classification networks: menis-
cus classification and tear classification along 16 epochs
(Fig. 6).

Faster RCNN for meniscus detection

To train the RPN, we assigned a binary class label (object or
not) to each anchor. We assigned a positive label to two kinds
of anchors: the anchors that had the highest 10U overlap
with a given ground-truth box and an anchor that had an
IOU overlap higher than 0.7 with any ground-truth box. On
the contrary, we assigned a negative label to an anchor if its
I0U ratio was lower than 0.3 for all ground-truth boxes. It is
to be noted that with label assignment, there were anchors
that were neither positive nor negative. Those anchors were
ignored and did not contribute to the training objective. The
generated regions were then used to train the fast RCNN
part of the network. Each region was assigned a label in the
same way as described above. Two methods exist to train
the faster RCNN network [6]. The first method consists of
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Figure 5.
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Extract region proposals using

the R-CNN pipeline (figure3)

Figure 6.

Determine presence or
absence of a tear in the

region

. Horizontal? No
Vertical? Yes

~ Tear? Yes — CNN

» Tear? No

Determine detected tear’s
orientation

Graphs show training curves of objective loss (left) and error (right) according to number of epochs for (a) the detection of

meniscal tear, (b) the location of the tear and (c) the direction of the tear tasks.

learning the RPN and fast RCNN one after another, and the
second method consists in learning everything altogether.
We chose the latter and trained the CNN along 14 epochs.

Inference

Analysis pipeline description

Once the three specific algorithms were trained, we built an
analysis pipeline that took an image as input and gave the
diagnosis as output in terms of absence/presence of a torn
meniscus. In case of presence of torn meniscus, the output
also specified the nature of the tear as horizontal or ver-
tical. First, we transferred the image into the faster RCNN
network trained to detect menisci in the image. It output a
fixed number of regions (500) with the probability of being a
meniscus. We kept only the regions with a probability of 0.5
and higher. Then we applied the non-maximum suppression
(NMS) algorithm to remove overlapping regions. Finally, as
there should be two menisci per image, we forced the algo-
rithm to output two regions. Each region was then classified
using the fast RCNN network trained to distinguish torn and
normal menisci (Fig. 5). The input was the image with the
extracted regions and the outputs were the probabilities for
each region of being a torn or a normal meniscus (the sum of
the two probabilities were equal to 1). In a classical binary
classification algorithm, the class with the maximum proba-
bility would be classified as the meniscus. In this case, this
strategy performed poorly and a threshold was set instead
on the probability of being a torn meniscus. A threshold of
0.15 achieved the best results. This parameter was shown
to affect the whole pipeline (see following section). Finally,
for each meniscus classified in the precedent step as being
torn, the fast RCNN network trained to classify tears as being
horizontal or vertical was used (Fig. 5). The outputs of the
network were once again two probabilities (summing to 1):
the probability of being a vertical tear and the probability
of being a horizontal tear. In this case, the meniscus was
attributed to the class with the maximum probability.

Precision and recall

In a detection task, precision and recall are the two main
metrics to follow. A high recall algorithm could be an algo-
rithm that classifies all menisci as being torn, but it would
have low precision. On the contrary, we could build an algo-
rithm that only classifies a meniscus as torn when it is 100%
sure, which would have a very high precision, but a low
recall. Therefore, algorithms need to have a good balance

between both recall and precision. However, in the case
of medical diagnosis, one side may be favored more than
another. If this is used as a cleaning tool for doctors, it
would be better to favor recall to be sure to detect all torn
menisci, with the doctor only removing false positives. The
0.15 threshold set in the torn versus normal classification
step was the main parameter influencing the performance of
our algorithm; the higher the threshold, the more it favored
precision.

Algorithm assessment

The performance metric defined by the challenge was based
on area under the curve (AUC). [11]. Considering three dis-
tinct tasks, which included detecting the presence, position
(anterior of posterior horn), and the orientation (longitu-
dinal or vertical) of the tear, this score was defined as in
Equation 2:

score = (0.4 x AUCpresence) + (0.3 x AUCpysition)
+ (03 X AUCOrientation) (2)

Results

On the training dataset of 1123 images, the algorithm
obtained a score of 0.95. On the final datasets of 700 images,
the following AUCs were obtained: AUCpesence =0.94,
AUCposition =0.92, and AUCorientation = 0.83, reaching a total
score of 0.90 according to Equation 2.

Next, we merged the meniscus classification and the
tear classification phases. Instead of having two binary clas-
sifiers, we trained a multi-label classifier with 3 classes,
which included not torn, vertical tear, and horizontal tear.
Thus, we had only one classification step during the infer-
ence phase. However, this did not perform better than
the previously described method. Finally, we also tried
to merge all three phases. During the training of the
faster R-CNN algorithm, instead of only detecting the
meniscus, we tried to detect and directly classify the
meniscus. Instead of having only two classes (background,
meniscus), there were four classes (background, meniscus-
not-torn, meniscus-horizontal-tear, meniscus-vertical-tear).
During the inference phase, there was only one step. Again,
this did not perform better than the previously described
method.
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Discussion

The deep learning tool developed for this data challenge
yielded good performance for diagnosing the presence or
absence of a meniscal tear, and localization and direction
of the tear when present. Our algorithm was trained on
1123 images but a larger dataset would improve the per-
formance of the algorithm. As large numbers of annotated
image data are necessary to develop and test deep learning
algorithms, this experience is proof of concept that cre-
ating datasets is an achievable endeavor. Since annotation
and determination of ground truth is one of the limits to
obtaining large datasets, one of the solutions may be to
mine medical records and radiology reports through natural
language processing techniques [12]. This task could be sim-
plified if radiologists wrote their reports in a consistent and
structured format. For example, in this data challenge, each
MR image of the knee was annotated with specific diagnoses
referenced in the CSV file to help teams be more efficient,
and work faster on the creation of the algorithm.

There is only one other study using deep learning net-
works for diagnosis of meniscal tear [13]. Bien et al. had a
similar training dataset of 1370 MRI examinations, but had
a greater percentage of examinations containing a menis-
cal tear (508/1370, 37%) versus 13% in our dataset. Bien
et al. used all MR images to train the network, and ground
truth was obtained from the majority vote of musculoskele-
tal radiologists. The network (MRNet) was tailored to detect
general abnormalities and specific diagnoses (among which
meniscal tears was only one example). The model also
included a convolutional neural network that differed from
ours in that they used three images where we used only
one; they had a full image classification approach while we
detected regions of interest first and then classified them;
they did not classify the orientation of the tear as horizontal
versus vertical; and they used a shallower network (AlexNet
vs. VGG) [14]. Performance for the diagnosis of meniscal
tear was an AUC of 0.847, slightly lower than our model. It
is noteworthy that the model was optimized preferentially
for the diagnosis of anterior cruciate ligament tears rather
than meniscal tears.

The first limitation of our study relates to the spe-
cific dataset created for this challenge, which contained
only two T2-weighted MR images in the sagittal plane for
each patient whereas MRl examination of the knee usu-
ally includes around 100 images. Moreover, images were
pre-processed to have the same matrix and voxel size. To
generalize and bring any algorithm similar to the one we
built to a clinical application, these steps would need to
be incorporated into the workflow and a real end-to-end
diagnostic tool would need to be developed. Secondly, we
strictly analyzed only normal menisci or those with abnor-
mal grade 3 high meniscal signal intensity. There was no
abnormal high meniscal signal intensity grade 1 or grade
2. Failure to include these types of lesion, which likely
differs from the radiologist’s usual practice, limits the appli-
cability of our algorithm, resulting in an added difficulty.
Finally, this tool is part of ‘‘narrow artificial intelligence
(Al)’’ addressing a very specific task in imaging. There is
current research focusing on other uses besides computer-
aided diagnosis, for example to speed up the time of the
examination.

In conclusion, our algorithm, based on RCNN, demon-
strated an AUC overall score of 0.9 to detect the presence
of meniscal tears, their position, and orientation, and paves
the way to develop more end-to-end Al-powered diagnos-
tic tools to help radiologists. Our findings suggest that Al
may improve the sensitivity and specificity of diagnoses in
radiology, by optimizing workflow efficiency, quality, reduce
errors, and inter-observer variability.
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