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Abstract
Purpose:  The  purpose  of  this  study  was  to  build  and  evaluate  a  high-performance  algorithm
to detect  and  characterize  the  presence  of  a  meniscus  tear  on  magnetic  resonance  imaging
examination  (MRI)  of  the  knee.
Material  and  methods:  An  algorithm  was  trained  on  a  dataset  of  1123  MR  images  of  the  knee.
We separated  the  main  task  into  three  sub-tasks:  first  to  detect  the  position  of  both  horns,
second to  detect  the  presence  of  a  tear,  and  last  to  determine  the  orientation  of  the  tear.
An algorithm  based  on  fast-region  convolutional  neural  network  (CNN)  and  faster-region  CNN,
was developed  to  classify  the  tasks.  The  algorithm  was  thus  used  on  a  test  dataset  composed
of 700  images  for  external  validation.  The  performance  metric  was  based  on  area  under  the
curve (AUC)  analysis  for  each  task  and  a  final  weighted  AUC  encompassing  the  three  tasks  was
calculated.
Results:  The  use  of  our  algorithm  yielded  an  AUC  of  0.92  for  the  detection  of  the  position  of
the two  meniscal  horns,  of  0.94  for  the  presence  of  a  meniscal  tear  and  of  083  for  determining
the orientation  of  the  tear,  resulting  in  a  final  weighted  AUC  of  0.90.
Conclusion:  We  demonstrate  that  our  algorithm  based  on  fast-region  CNN  is  able  to  detect
meniscal  tears  and  is  a  first  step  towards  developing  more  end-to-end  artificial  intelligence-
powered  diagnostic  tools.
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ntroduction

achine  learning  software  has  the  potential  to  make  work-
ow  more  efficient  for  medical  professionals.  Indeed,
anufacturers  of  radiological  equipment  have  started  inte-

rating  artificial  intelligence  (AI)  tools  into  their  medical
maging  software  systems.  This  approach  is  limited  by  the
eed  to  access  large  numbers  of  patient  data  and  images
hat  provide  learning  material  for  AI  algorithms.

The  French  Radiology  Society  (SFR)  organized  a data
hallenge  to  detect  meniscus  tears  using  a  dataset  from
agnetic  resonance  imaging  (MRI)  examination  of  the  knees

n  October  2018  during  the  Journées  Francophones  de  la
adiologie. The  meniscus  tear  is  one  of  the  most  frequent
artilage  injuries  of  the  knee,  and  MRI  is  a  useful  method
or  detecting  meniscus  tears  as  it  has  high  sensitivity  and
pecificity  for  that  task  [1,2].

The  purpose  of  this  study  was  to  build  and  evaluate  a
igh-performance  algorithm  to  detect  and  characterize  the
resence  of  a  meniscus  tear  on  MRI  of  the  knee.

aterial and methods
ata collection

e  formed  a  multidisciplinary  team  comprised  of  three
adiologists  from  the  Georges  Pompidou  hospital  of  the
ssistance  Publique—Hôpitaux  de  Paris  (AP—HP)  and  three
ngineers  including  one  student  from  Centrale-Supélec
chool.  Images  were  collected  after  obtaining  signed
nformed  consent  from  patients,  anonymization,  and
uthorization  by  the  French  regulatory  authorities  (i.e.,
ommission  nationale  de  l’informatique  et  des  libertés).

The  training  dataset  was  composed  of  1123  MR  images
f  the  knee,  and  the  test  dataset  was  composed  of  700
mages.  All  these  MR  images  were  obtained  from  41  hos-
itals  in  France.  The  dataset  contained  T2-weighted  images
f  the  right  or  left  knee  passing  through  the  anterior  and
osterior  horns  of  the  medial  or  lateral  meniscus  in  Nifti  for-
at  [3,4]  with  a  matrix  resolution  of  256  ×  256  and  isotropic

oxels  of  0.332  mm2.  Only  normal  menisci  or  those  with
bnormal  grade  3  high  meniscal  signal  intensity  accord-
ng  to  Stoller’s  classification  (abnormal  hyperintensity  that
xtends  to  at  least  one  articular  surface,  superior  or  infe-
ior)  were  included.  Along  with  training  images,  we  also  had
nnotation  data  in  a  comma-separated  values  (CSV)  file  with
nformation  about  the  type  of  meniscus  (lateral  or  medial),
he  presence  of  tear  and,  if  any,  its  location  (anterior  or  pos-
erior),  and  orientation  (horizontal  or  longitudinal),  which
ere  used  as  ground  truth.  Fig.  1  illustrates  images  from

he  data  set.
The  objective  of  the  challenge  was  to  build  a high-

erformance  algorithm  to  detect  the  presence  of  a  tear  in
he  meniscus,  the  position  of  the  tear  and  its  orientation.
eniscus  tear  includes  two  main  mechanisms:  degenera-

ive  (longitudinal)  or  post-traumatic,  and  their  diagnosis
s  based  on  two  important  imaging  criteria  including  an

bnormal  shape  of  the  meniscus  and  high  signal  intensity
nequivocally  in  contact  with  the  surface  of  the  meniscus  on
2-weighted  MRI  images.  We  studied  the  high  signal  intensity
o  detect  the  tear.
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We  separated  the  main  task  into  three  sub-tasks:
meniscus  detection  (the  position  of  both  horns);
meniscus  classification  (with  or  without  tear);
tear  classification  (orientation  of  the  tear).

A  first  ‘‘brute-force’’  version  of  the  algorithm  could  have
een  used  to  train  a  neural  network  to  perform  a  binary
lassification  on  the  entire  image  (torn  meniscus  vs.  no  torn
eniscus).  Instead,  we  decided  to  follow  the  steps  doctors

ake  to  perform  the  diagnosis  without  an  algorithm:  first  to
nd  the  horns  in  the  image,  then  diagnose  each  of  them
s  torn  or  not.  The  horn  represented  a  small  part  of  the
otal  image  and  the  tear  an  even  smaller  one  (Fig.  1).  The
ain  information  to  detect  the  meniscus  tear  was  the  high

ntensity  signal  on  the  horn.  However,  the  limitation  of  con-
idering  only  the  high  intensity  signal  was  that  the  images
ere  often  noisy  (Fig.  2).

onvolutional neural network

ll  three  steps  of  our  algorithm  were  based  on  convolutional
eural  network  (CNN),  and  more  specifically  on  fast-region
NN  (RCNN)  [5]  and  faster-RCNN  [6]  backbones.

A  CNN  is  an  accumulation  (more  or  less  deep)  of  layers
lassified  into  four  main  categories:  convolutional  layers,
ectification  layers,  pooling  layers,  and  loss  layers  [7].  The
earning  process  of  a  CNN  lies  in  two  different  steps:  the
orward  pass  (computes  the  loss),  and  the  backward  pass
computes  the  gradient  of  this  loss).  The  backward  pass
egins  with  the  loss  and  computes  the  gradient  with  respect
o  the  output.  The  gradient  with  respect  to  the  rest  of
he  model  is  computed  layer-by-layer  through  the  chain
ule.  The  weight  parameters  of  the  network  are  usually
pdated  using  a  stochastic  gradient  descent  (SGD).  Using

 batch  of  images  (usually  around  100)  randomly  selected
rom  a  dataset,  we  evaluate  a  loss  that  is  back-propagated
o  update  the  weight  parameters  of  the  network  according
o  Eq.  (1):

 =  w  −  ˛
∂l

∂w
(1)

To  train  a  CNN,  this  operation  is  repeated  thousands  of
imes  until  we  reach  convergence.  Thus,  a  larger  dataset
ould  result  in  better  CNN  training.

CNN
bject  detection  tasks  recognize  an  object,  and  object

ocalization  tasks  evaluate  the  coordinates  of  a  bounding
ox  in  which  the  object  is  situated  in  the  image.  The  RCNN
ombines  a  region  proposal  algorithm  with  a  CNN  [8].  The
bject  detection  pipeline  consists  of  three  main  modules:
a region  proposal  algorithm,  which  extracts  category-
independent  regions  of  interest  in  a  given  image;
a large  and  deep  CNN  that  generates  a  fixed-length  fea-
ture  vector  from  each  region  proposal;

a  set  of  one-versus-all  linear  support  vector  machine
(SVM)  classifiers,  which  classify  each  region  proposal
(Fig.  3).
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Figure 1. T2-weighted MR images in the sagittal plane through the medial or lateral meniscus show the different types of meniscal images
included in the training and validation data sets. (a) Lateral meniscus without tear, (b) lateral meniscus with horizontal tear in the anterior
horn (arrow), (c) medial meniscus with vertical tear in the posterior horn
horn (arrow).

Figure 2. T2-weighted MR image of the knee including bounding
boxes with their classification. The image was originally obtained in
the sagittal plane and further flipped horizontally and rotated 90◦
counter-clockwise for analysis purposes.
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 (arrow)and (d) medial meniscus with vertical tear in the posterior

ast RCNN
o  overcome  the  limitations  of  RCNN,  a  fast  RCNN  was  used
5]. This  ‘‘accelerated  method’’  forwards  the  whole  image
n  the  net  and  extracts  the  region  proposals  only  after  the
ast  convolutional  layer  and  before  the  first  fully  connected
ayer.  This  is  done  through  a  region  of  interest  (ROI)-pooling
ayer;  given  the  coordinates  of  the  ROI,  and  the  feature
aps  supplied  by  the  last  convolutional  layer  of  the  net-
ork  (typically  an  array  of  size  H  ×  W  ×  C),  the  ROI-pooling

ayers  output  max-pooled  feature  maps  with  fixed  spatial
ize  H′ ×  W′ and  the  original  C  channels  (H′ ≤  H  and  W′ ≤  W).
hus,  instead  of  forwarding  each  region  proposal  through
he  net  one  by  one,  we  forward  the  full  image  only  once,
educing  computational  time  considerably.

aster RCNN
ince  convolutions  are  shared  across  region  proposals,  fast
CNN  achieves  near  real-time  rates  using  deep  networks,
ut  this  does  not  include  the  time  spent  on  region  proposals.

egion  proposal  computational  time  is  thus  the  bottleneck
egion  of  interest  of  these  methods.  To  tackle  this  barrier,

 region  proposal  network  (RPN)  that  shares  full-image
onvolutional  features  with  the  detection  network,  has
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Figure 4. T2-weighted MR image of the knee in sagittal plane
with superimposed rectangular regions of interest generated by
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igure 3. Diagram shows the region convolutional neural networ

een  developed  thus  enabling  nearly  cost-free  region
roposals[6].  A  RPN  is  a  fully  convolutional  network  that
imultaneously  predicts  object  bounds  and  objectness
cores  at  each  position  [9].  A  RPN  takes  an  image  of  any  size
s  input  and  outputs  a  set  of  rectangular  region  proposals
hat  are  most  likely  to  contain  an  object.  Each  region
roposal  comes  with  an  objectness  score.

RPN  can  be  considered  a  fully  convolutional  network,  but
he  main  advantage  of  the  RPN  described  in  faster  RCNN  [7]
s  that  its  convolutional  layers  are  shared  with  the  fast  RCNN
5]  object  detection  architecture.  Thus,  both  networks  can
hare  a  large  part  of  their  computation.  After  the  last  shared
onvolution  layer,  a  feature  map  is  generated  on  which  they
lide  a  convolution  layer  of  3  ×  3,  followed  by  two  sibling
ully-connected  layers.  A  box-regression  layer  outputs  the
eltas  that  must  be  applied  to  the  coordinates  of  reference
oxes  (called  anchors)  [5],  and  a  classification  layer  that
omputes  the  probability  of  being  an  object.  At  each  node
f  the  feature  map,  �  region  proposals  are  simultaneously
redicted  corresponding  to  different  scale  and  aspect  ratio.
herefore,  for  a  feature  map  of  dimension  H  ×  W  there  is  a
otal  of  H  ×  W  ×  k  reference  boxes.  Here,  we  used  3  scales
nd  3  aspect  ratios,  yielding  k  =  9  reference  boxes.

raining

ataset
ur  training  dataset  consisted  of  1123  images.  To  train  the
hree  steps  of  our  algorithm,  we  annotated  each  image
ith  a  bounding  box  surrounding  each  horn  of  the  meniscus

Fig.  4).  Then  we  added  a  label  of  either  not  torn,  horizon-
al  tear,  or  vertical  tear  to  each  bounding  box  (Fig.  5).  We
ad  a  total  of  2246  menisci  with  1948/2246  (87%)  non-torn
enisci;  298/2246  (13%)  with  a  meniscal  tear;  183/272  (61%)
enisci  with  a  horizontal  tear;  and  115/272  (39%)  menisci
ith  a  vertical  tear.

ast RCNN for meniscus classification
n  fast  RCNN  [5],  the  selective  search  algorithm  agnosti-
ally  generates  many  regions  of  interest  [10]. A  label  is
hen  assigned  to  each  of  these  regions.  A  region  that  has
n  intersection-over-union  (IOU)  higher  than  a  set  thresh-
ld  with  any  ground-truth  box  is  given  the  label  of  the
round  truth  box.  A  region  with  a  maximum  IOU  over  all  the
round  truth  boxes  of  the  image  below  a  second  set  thresh-
ld  is  labeled  as  ‘‘background’’.  We  typically  set  the  first

hreshold  to  0.3  and  the  second  to  0.1.  Instead  of  using  the
elective  search  algorithm  to  generate  the  regions  of  inter-
sts,  we  randomly  generate  boxes  around  the  ground  truth
oxes  (Fig.  4).  This  produced  similar  regions  as  selective
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he faster region convolutional neural network including menisci.
ounding boxes of automatically-generated regions are in yellow.

earch  with  the  same  diversity  in  size  and  aspect  ratio,  but
ith  the  advantage  of  being  instantaneous.  After  labeling

egions  of  interest,  we  fed  them  with  corresponding  images
o  the  network  and  trained  it  using  SGD  and  a  softmax  loss.  In
rder  to  augment  the  size  of  our  dataset,  we  used  both  the
riginal  images  and  their  vertically-flipped  version  during
he  training.  We  trained  both  classification  networks:  menis-
us  classification  and  tear  classification  along  16  epochs
Fig.  6).

aster RCNN for meniscus detection
o  train  the  RPN,  we  assigned  a  binary  class  label  (object  or
ot)  to  each  anchor.  We  assigned  a  positive  label  to  two  kinds
f  anchors:  the  anchors  that  had  the  highest  IOU  overlap
ith  a  given  ground-truth  box  and  an  anchor  that  had  an

OU  overlap  higher  than  0.7  with  any  ground-truth  box.  On
he  contrary,  we  assigned  a  negative  label  to  an  anchor  if  its
OU  ratio  was  lower  than  0.3  for  all  ground-truth  boxes.  It  is
o  be  noted  that  with  label  assignment,  there  were  anchors
hat  were  neither  positive  nor  negative.  Those  anchors  were
gnored  and  did  not  contribute  to  the  training  objective.  The
enerated  regions  were  then  used  to  train  the  fast  RCNN

art  of  the  network.  Each  region  was  assigned  a  label  in  the
ame  way  as  described  above.  Two  methods  exist  to  train
he  faster  RCNN  network  [6].  The  first  method  consists  of
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Figure 5. Diagram shows full algorithm pipeline. CNN indicates convolutional neural network. RCNN indicates region convolutional neural
network.
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igure 6. Graphs show training curves of objective loss (left) an
eniscal tear, (b) the location of the tear and (c) the direction of t

earning  the  RPN  and  fast  RCNN  one  after  another,  and  the
econd  method  consists  in  learning  everything  altogether.
e  chose  the  latter  and  trained  the  CNN  along  14  epochs.

nference

nalysis pipeline description
nce  the  three  specific  algorithms  were  trained,  we  built  an
nalysis  pipeline  that  took  an  image  as  input  and  gave  the
iagnosis  as  output  in  terms  of  absence/presence  of  a torn
eniscus.  In  case  of  presence  of  torn  meniscus,  the  output

lso  specified  the  nature  of  the  tear  as  horizontal  or  ver-
ical.  First,  we  transferred  the  image  into  the  faster  RCNN
etwork  trained  to  detect  menisci  in  the  image.  It  output  a
xed  number  of  regions  (500)  with  the  probability  of  being  a
eniscus.  We  kept  only  the  regions  with  a  probability  of  0.5

nd  higher.  Then  we  applied  the  non-maximum  suppression
NMS)  algorithm  to  remove  overlapping  regions.  Finally,  as
here  should  be  two  menisci  per  image,  we  forced  the  algo-
ithm  to  output  two  regions.  Each  region  was  then  classified
sing  the  fast  RCNN  network  trained  to  distinguish  torn  and
ormal  menisci  (Fig.  5).  The  input  was  the  image  with  the
xtracted  regions  and  the  outputs  were  the  probabilities  for
ach  region  of  being  a  torn  or  a  normal  meniscus  (the  sum  of
he  two  probabilities  were  equal  to  1).  In  a  classical  binary
lassification  algorithm,  the  class  with  the  maximum  proba-
ility  would  be  classified  as  the  meniscus.  In  this  case,  this
trategy  performed  poorly  and  a  threshold  was  set  instead
n  the  probability  of  being  a  torn  meniscus.  A  threshold  of
.15  achieved  the  best  results.  This  parameter  was  shown
o  affect  the  whole  pipeline  (see  following  section).  Finally,
or  each  meniscus  classified  in  the  precedent  step  as  being
orn,  the  fast  RCNN  network  trained  to  classify  tears  as  being
orizontal  or  vertical  was  used  (Fig.  5).  The  outputs  of  the
etwork  were  once  again  two  probabilities  (summing  to  1):
he  probability  of  being  a  vertical  tear  and  the  probability
f  being  a  horizontal  tear.  In  this  case,  the  meniscus  was
ttributed  to  the  class  with  the  maximum  probability.

recision and recall
n  a  detection  task,  precision  and  recall  are  the  two  main
etrics  to  follow.  A  high  recall  algorithm  could  be  an  algo-

ithm  that  classifies  all  menisci  as  being  torn,  but  it  would

ave  low  precision.  On  the  contrary,  we  could  build  an  algo-
ithm  that  only  classifies  a  meniscus  as  torn  when  it  is  100%
ure,  which  would  have  a  very  high  precision,  but  a  low
ecall.  Therefore,  algorithms  need  to  have  a  good  balance

n
D
t
m

or (right) according to number of epochs for (a) the detection of
ar tasks.

etween  both  recall  and  precision.  However,  in  the  case
f  medical  diagnosis,  one  side  may  be  favored  more  than
nother.  If  this  is  used  as  a  cleaning  tool  for  doctors,  it
ould  be  better  to  favor  recall  to  be  sure  to  detect  all  torn
enisci,  with  the  doctor  only  removing  false  positives.  The

.15  threshold  set  in  the  torn  versus  normal  classification
tep  was  the  main  parameter  influencing  the  performance  of
ur  algorithm;  the  higher  the  threshold,  the  more  it  favored
recision.

lgorithm assessment

he  performance  metric  defined  by  the  challenge  was  based
n  area  under  the  curve  (AUC).  [11]. Considering  three  dis-
inct  tasks,  which  included  detecting  the  presence,  position
anterior  of  posterior  horn),  and  the  orientation  (longitu-
inal  or  vertical)  of  the  tear,  this  score  was  defined  as  in
quation  2:

core  = (0.4  ×  AUCPresence) + (0.3  ×  AUCPosition)

+ (0.3  ×  AUCOrientation) (2)

esults

n  the  training  dataset  of  1123  images,  the  algorithm
btained  a score  of  0.95.  On  the  final  datasets  of  700  images,
he  following  AUCs  were  obtained:  AUCPresence =  0.94,
UCPosition =  0.92,  and  AUCOrientation =  0.83,  reaching  a  total
core  of  0.90  according  to  Equation  2.

Next,  we  merged  the  meniscus  classification  and  the
ear  classification  phases.  Instead  of  having  two  binary  clas-
ifiers,  we  trained  a  multi-label  classifier  with  3  classes,
hich  included  not  torn,  vertical  tear,  and  horizontal  tear.
hus,  we  had  only  one  classification  step  during  the  infer-
nce  phase.  However,  this  did  not  perform  better  than
he  previously  described  method.  Finally,  we  also  tried
o  merge  all  three  phases.  During  the  training  of  the
aster  R-CNN  algorithm,  instead  of  only  detecting  the
eniscus,  we  tried  to  detect  and  directly  classify  the
eniscus.  Instead  of  having  only  two  classes  (background,
eniscus),  there  were  four  classes  (background,  meniscus-
ot-torn,  meniscus-horizontal-tear,  meniscus-vertical-tear).
uring  the  inference  phase,  there  was  only  one  step.  Again,
his  did  not  perform  better  than  the  previously  described
ethod.
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Discussion

The  deep  learning  tool  developed  for  this  data  challenge
yielded  good  performance  for  diagnosing  the  presence  or
absence  of  a  meniscal  tear,  and  localization  and  direction
of  the  tear  when  present.  Our  algorithm  was  trained  on
1123  images  but  a  larger  dataset  would  improve  the  per-
formance  of  the  algorithm.  As  large  numbers  of  annotated
image  data  are  necessary  to  develop  and  test  deep  learning
algorithms,  this  experience  is  proof  of  concept  that  cre-
ating  datasets  is  an  achievable  endeavor.  Since  annotation
and  determination  of  ground  truth  is  one  of  the  limits  to
obtaining  large  datasets,  one  of  the  solutions  may  be  to
mine  medical  records  and  radiology  reports  through  natural
language  processing  techniques  [12].  This  task  could  be  sim-
plified  if  radiologists  wrote  their  reports  in  a  consistent  and
structured  format.  For  example,  in  this  data  challenge,  each
MR  image  of  the  knee  was  annotated  with  specific  diagnoses
referenced  in  the  CSV  file  to  help  teams  be  more  efficient,
and  work  faster  on  the  creation  of  the  algorithm.

There  is  only  one  other  study  using  deep  learning  net-
works  for  diagnosis  of  meniscal  tear  [13].  Bien  et  al.  had  a
similar  training  dataset  of  1370  MRI  examinations,  but  had
a  greater  percentage  of  examinations  containing  a  menis-
cal  tear  (508/1370,  37%)  versus  13%  in  our  dataset.  Bien
et  al.  used  all  MR  images  to  train  the  network,  and  ground
truth  was  obtained  from  the  majority  vote  of  musculoskele-
tal  radiologists.  The  network  (MRNet)  was  tailored  to  detect
general  abnormalities  and  specific  diagnoses  (among  which
meniscal  tears  was  only  one  example).  The  model  also
included  a  convolutional  neural  network  that  differed  from
ours  in  that  they  used  three  images  where  we  used  only
one;  they  had  a  full  image  classification  approach  while  we
detected  regions  of  interest  first  and  then  classified  them;
they  did  not  classify  the  orientation  of  the  tear  as  horizontal
versus  vertical;  and  they  used  a  shallower  network  (AlexNet
vs.  VGG)  [14].  Performance  for  the  diagnosis  of  meniscal
tear  was  an  AUC  of  0.847,  slightly  lower  than  our  model.  It
is  noteworthy  that  the  model  was  optimized  preferentially
for  the  diagnosis  of  anterior  cruciate  ligament  tears  rather
than  meniscal  tears.

The  first  limitation  of  our  study  relates  to  the  spe-
cific  dataset  created  for  this  challenge,  which  contained
only  two  T2-weighted  MR  images  in  the  sagittal  plane  for
each  patient  whereas  MRI  examination  of  the  knee  usu-
ally  includes  around  100  images.  Moreover,  images  were
pre-processed  to  have  the  same  matrix  and  voxel  size.  To
generalize  and  bring  any  algorithm  similar  to  the  one  we
built  to  a  clinical  application,  these  steps  would  need  to
be  incorporated  into  the  workflow  and  a  real  end-to-end
diagnostic  tool  would  need  to  be  developed.  Secondly,  we
strictly  analyzed  only  normal  menisci  or  those  with  abnor-
mal  grade  3  high  meniscal  signal  intensity.  There  was  no
abnormal  high  meniscal  signal  intensity  grade  1  or  grade
2.  Failure  to  include  these  types  of  lesion,  which  likely
differs  from  the  radiologist’s  usual  practice,  limits  the  appli-
cability  of  our  algorithm,  resulting  in  an  added  difficulty.
Finally,  this  tool  is  part  of  ‘‘narrow  artificial  intelligence
(AI)’’  addressing  a  very  specific  task  in  imaging.  There  is

current  research  focusing  on  other  uses  besides  computer-
aided  diagnosis,  for  example  to  speed  up  the  time  of  the
examination.

[
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In  conclusion,  our  algorithm,  based  on  RCNN,  demon-
trated  an  AUC  overall  score  of  0.9  to  detect  the  presence
f  meniscal  tears,  their  position,  and  orientation,  and  paves
he  way  to  develop  more  end-to-end  AI-powered  diagnos-
ic  tools  to  help  radiologists.  Our  findings  suggest  that  AI
ay  improve  the  sensitivity  and  specificity  of  diagnoses  in

adiology,  by  optimizing  workflow  efficiency,  quality,  reduce
rrors,  and  inter-observer  variability.
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